

A brief review of everything we
covered

Chapter 1 Abstraction and Analysis

● API (application programming interface)
● Abstraction
● Pre- and post-conditions

– Side effects
● Signature and specification of a function
● Top-down design

– Bottom-up implementation
● Algorithm analysis

– T(n)
– O and Θ notations
– Linear search
– Binary search
– Selection sort

Chapter 2 Data Abstraction

● ADT (abstract data types)
– operator overloading

● Card
– rank, 1-13 or 2-14
– suit, “cdhs”

● Polymorphism, encapsulation, inheritance
● (optional) Dataset ADT (Section 2.4.2)
● Unit testing

– HW assignment to test rank, suit, rankName,
suitName

● (optional) Rational class

Chapter 3 Data Abstraction
● Python list, a sequential collection

– Underlying implementation: array, a contiguous memory
– Run-time complexity of insertion, deletion, appending, random access

● Deck, a sequential collection
– A collection of Card objects

● What container was used?
– Shuffle method

● Run-time complexity?

– HW assignment: size, random for shuffling, addTop, addBottom, addRandom
● Hand (Bridge)

– has Card objects
– added the comparison operations to Card class

● Python dict
– Methods
– Run-time efficiency of dict methods
– Linear search
– Binary search

Part 1
True/False and Multiple Choice Questions

1) Python lists are implemented using contiguous arrays.
True or False?

2) Inserting into the middle of array-based
implementation of the list is a (n) operation. True or
False?

3) Looking up an item in a Python dictionary, given key,
is a (n) operation. True or False?

4) Which of the following is not true of Python list (choose
only one)?

(a) They are implemented underneath as contiguous
arrays

(b) They allow for efficient random access

(c) They can grow and shrink dynamically

(d) All items in a list must be of the same type

Part 1
True/False and Multiple Choice Questions

5) What operation is not supported for Python
dictionaries?

(a) Item ordering (sorting)

(b) Item insertion

(c) Item deletion

(d) Item lookup

Part 1
True/False and Multiple Choice Questions

Chapter 4 Linked structures and iterators

● More about Python memory model
– Objects
– shallow and deep copies

● Linked list (singly linked list)
– Run-time complexity of methods
– Iterators

● Iterator class
● Generator function

● Links vs arrays
– Run-time complexity comparison of classes methods

● HW assignment
– add more methods to LList class
– add data attribute last
– Reverse a list (HW 9)

Chapter 11 C++ linked structures

● class LList
– Using dynamic memory allocation
– destructor
– The rest of the member functions

● HW assignment
– Doubly linked list

Chapter 5 Stacks and Queues

● Stack ADT: LIFO
– Implementation (in Python and C++)
– applications

● Balanced grouping symbols (suggested practice)
● Postfix and prefix expressions (postfix – homework assignment)
● Function call stack

● Queue ADT: FIFO
– Implementation in Python and C++ (suggested practice)
– Options for implementation: circular arrays, etc.

● suggested practice:
– Unit testing of Stack and Queue methods

● In-class work: cab company
● HW assignment

– add more methods to LList class
– add data attribute last

● Recommended reading: simulation of a cashier at a store

6) When using a linked implementation of a queue, where
should insertions be done?

(a) at the front (head) of the linked list

(b) in the middle of the list

(c) at the end (tail) of the list

(d) anywhere in the list, just keep the information of its
location

Part 1
True/False and Multiple Choice Questions

Chapter 6 Recursion

● Definition
● Examples:

– Binary search
– Fibonacci numbers

● bad recursive definition
● Good, similar to iterative version

– Factorial
– String reversal
– Anagrams
– Power function
– Mergesort
– Tower of Hanoi

● Analyzing recursion
● In-class work
● Suggested practice

Chapter 10 C++ Dynamic Memory

● Memory model: Python and C++
– Variables
– objects

● Dynamic memory allocation: dynamic arrays
– Destructor
– Constructor

● Copy constructor
– Assignment operator, etc.

● class List
● Reference return types
● Dynamic memory errors

– Memory leaks
– Accessing invalid memory

● HW assignment: class Rational

Chapter 7 Trees

● Tree terminology
● Binary trees

– Pre-order traversal → prefix expression
– In-order traversal → infix expression
– Post-order traversal → postfix expression

● BST (Binary Search Tree)
– BST property
– Insertion (iterative and recursive)
– Deletion
– Find
– Traversal

● Used generator function (Python)
● Visit function (Python)

– Run-time analysis of BST operations
● In-class work
● Suggested practice: C++ version, unit tests for Python BST

Part 2

The integers: 20,12,7,14,2,5,3 and 8 are inserted into a
binary search tree, one by one (initially the binary search
tree was empty).
Draw the final tree as it appears after all the insertions,
without re-balancing after each insertion operation.

Part 2

Given a binary tree, write the output of preorder, inorder,
and postorder traversal.

Chapter 12 Templates

● Template classes
● Template functions
● vector class
● Template Stack class
● Suggested practice: template Queue class
● See other in-class work
● Homework:

– Template average function
– Template List class

Chapter 13 Heaps, AVL, Hash Tables

● Heap
– heapsort

● Priority queue
– Implementation ideas (chose to use Heap)

● AVL trees
– AVL property

● Hash tables
– Collision resoluion

● Suggested practice
● Homework

Part 2
Answer all questions

1) Given the following heap:

(a) Draw the underlying array
representation of this heap

(b) Show the addition of the
value of 10 to the heap (and the updated heap)

(c) Show the deletion of value 25 from the heap (and the
updated heap)

Part 2
Answer all questions

2) The integers 20,12,7,14,2,5,3 and 8 are inserted in that
order into a priority queue.
Give the order in which these values are retrieved.

Chapter 14 Graphs

● Graph terminology
● Representations:

– adjacency matrix
– adjacency list

● Shortest Path algorithms
– BFS (Breadth First Search)
– Dijkstra’s

● Depth First Search algorithm (DFS)
● Minimum Spanning Trees

– Kruskal’s
– Prim’s

Part 2
Answer all questions

4) Represent this directed, unweighted graph as a Python
list two ways:
● as an adjacency matrix, and
● as an adjacency list.

Which representation is most efficient for a graph which
has very few edges between nodes?

7) The scope of a variable refers to

(a) the different values it can hold

(b) the section of code where the variable can be
accessed

(c) the time during which memory is allocated for the
variable

(d) the name of the variable

Part 1
True/False and Multiple Choice Questions

8) A C++ function must return a value.

True of False?

Part 1
True/False and Multiple Choice Questions

Part 3
Answer 3 out of 5 questions

1) The integers: 20,12,7,14,2,5,3 and 8 are inserted into an
empty AVL tree, one by one.
After some of the insertion operations the tree needs to
be re-balanced.
Show all the work (as the tree appears after every
insertion and after every re-balancing).

CSI 33 Final Exam
 consists of three parts

Part 1: True/False and Multiple Choice questions
(10-11 questions)

Part 2: Short answer questions
(4-5 questions)

Part 3: Long answer questions
(pick 3 or 4 questions out of 5 (or 6)

This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

